#### Mediterranean Countries' Potential Vulnerability to Ocean Acidification

#### **Nathalie HILMI and Alain SAFA**

Ocean acidification (OA) refers to changes in ocean chemistry brought about by increase in atmospheric CO<sub>2</sub> from combustion of fossil fuels, deforestation and cement production. The ocean is particularly sensitive to these emissions because it currently absorbs about one-fourth of the anthropogenic CO<sub>2</sub> that is emitted to the atmosphere. As anthropogenic CO<sub>2</sub> is absorbed by the ocean, it produces carbonic acid that reduces the levels of carbonate ion, which is used by many marine organisms to construct shell and skeletal material. These changes in ocean chemistry are expected to adversely affect many marine organisms, including some commercially important species. Scientific research on OA is still in its infancy but most studies show decreasing production of shell and skeletal formation (calcification) with increasing acidification. Acidification-induced alterations in plankton communities may cause disturbances to marine food webs that will affect fisheries (Hilmi&A1, 2009).

Such projections are of particular economic importance, because the aquaculture industry is positioning itself for a 'blue revolution', i.e., the aquatic analogue of the agricultural 'green revolution' that began in the 1960's, to fill much of the projected shortfall in food production from conventional agriculture as needed to feed the increasing world population during subsequent decades (Sachs 2007).

Following the lead of the Stern Review (Stern 2006) in regards to global climate change, we take a macroeconomic approach to begin to assess the economic impacts of Mediterranean Sea acidification. Cooley and Doney (2009) made an economic assessment of ocean acidification on US coastal waters, taking a precautionary approach to management, i.e., offering advice for political actions "before ocean acidification's effects on marine resources become obvious and perhaps irreversible"; we adopt a similar rationale and strategy here. Costanza et al. (1997), highlight that such an approach may reduce fishery revenue in the short term, but that in the long term, a conservation strategy will be sustainable. Charles (2007) and Lenton et al. (2008) also emphasize an interdisciplinary approach focused on monitoring, as we do here. This study confirms the necessary link between natural economic sciences that is needed to evaluate the effects of ocean acidification not only on the environment but also on the economy. Our approach is global and international, but it must focus geographically, to properly assess the specificities of the Mediterranean Sea. For a consistent analysis across countries, we rely on the homogenised data from the FAO Fishstat database and the International Labor Organisation, and provide only some summary conclusions here that will elaborated upon in a subsequent publication.

# Importance of fisheries activities at the global level

On the following table, we notice that the world production of fisheries tend to decrease in the developed countries and to increase in the developing countries.

<u>Table 1: Total Fisheries Production (metric tonnes)</u>

|            | 1990       | 1995       | 2000       | 2006                   | 2007       | 2008           |
|------------|------------|------------|------------|------------------------|------------|----------------|
| Developed  |            |            |            |                        |            |                |
| countries  | 42369456   | 34876128,9 | 33112099,4 | 29672029               | 29660156,3 | 28504626,6     |
| Least      |            |            |            |                        |            |                |
| Developed  |            |            |            |                        |            |                |
| Countries  | 4093394,6  | 4655552,4  | 6195198,3  | 9100049,5              | 9676705,7  | 10012274,5     |
| Other      |            |            |            |                        |            |                |
| developing |            |            |            |                        |            |                |
| countries  | 56271076,8 | 85018477   | 96858091,6 | 113279709              | 116416740  | 120572794      |
| Other      | 00077      | 212110     | 240424     | <b>-</b> 4 <b>-</b> 00 |            | <b>7</b> 0.400 |
|            | 88855      | 312449     | 240124     | 74700                  | 63346      | 59408          |
| TOTAL      | 102822782  | 124862607  | 136405513  | 152126488              | 155816948  | 159149103      |
|            | 102022702  | 124002007  | 130403313  | 132120400              | 133010340  | 137147103      |

In fact, the capture activities decresease in the advanced economies and increase in the developing countries.

<u>Table 2: Capture Fish production (Quantity, metric tonnes)</u>

|                            | 1985     | 1990      | 1995      | 2000      | 2006      | 2007      | 2008      |
|----------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Developed                  | 41070392 | 38926655  | 31286269  | 29032361  | 25381484  | 25145576  | 24128680  |
| countries                  |          |           |           |           |           |           |           |
| <b>Least Developed</b>     | 3229457  | 3858164,6 | 4213444,4 | 5333656,3 | 7402559,5 | 7881815,7 | 8077904,5 |
| Countries                  |          |           |           |           |           |           |           |
| Other developing countries | 35043026 | 43123151  | 57854194  | 60126843  | 57878522  | 57898172  | 58534168  |
| Other                      | 24588    | 88855     | 312449    | 240124    | 74700     | 63346     | 59408     |
| TOTAL                      | 79367463 | 85996825  | 93666357  | 94732985  | 90737265  | 90988910  | 90800160  |

But aquaculture increases in all the areas of the world represented on the table below, and moreover in developing countries.

<u>Table 3: Aquaculture Fish production (Quantity, metric tonnes)</u>

|                              | 1985     | 1990     | 1995     | 2000     | 2006     | 2007     | 2008     |
|------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Developed countries          | 2863231  | 3442801  | 3589860  | 4079738  | 4290545  | 4514580  | 4375947  |
| Least Developed<br>Countries | 140731   | 235230   | 442108   | 861542   | 1697490  | 1794890  | 1934370  |
| Other developing countries   | 8349379  | 13147926 | 27164283 | 36731249 | 55401188 | 58518569 | 62038626 |
| TOTAL                        | 11353341 | 16825957 | 31196251 | 41672529 | 61389223 | 64828039 | 68348943 |

If the developed countries fish less, their needs in seafood have not diminished. We consider the commercial aspect now to see if their imports compensate the decrease of their production.

Indeed, the table below shows a significant rise of seafood imports and exports in advanced economies. Imports are far more important than exports, contributing to their international trade deficit.

<u>Table 4 : TRADE Quantity (metric tonnes) and Value (thousands of dollar)</u>
<u>Developed countries or areas</u>

|                        | 1985     | 1990     | 1995     | 2000     | 2005     | 2006     | 2007     |
|------------------------|----------|----------|----------|----------|----------|----------|----------|
| Export<br>Quantity     | 8531175  | 9865868  | 11518376 | 13156786 | 14918124 | 14710903 | 14870371 |
| <b>Export Value</b>    | 9747245  | 20323353 | 25789479 | 27528355 | 40550453 | 43814801 | 48619456 |
| Import<br>Quantity     | 10205141 | 12694640 | 15546247 | 17666415 | 19581915 | 19630365 | 19974834 |
| Import Value           | 16277402 | 34675470 | 48193602 | 50602212 | 66165247 | 72655621 | 78244752 |
| Production<br>Quantity | 22474709 | 22364498 | 19148243 | 19413188 | 18933860 | 18818870 | 18906472 |
| Reexport<br>Quantity   | 4036     | 6435     | 154      | 344      | 2737     | 4452     | 3510     |
| Reexport<br>Value      | 15756    | 29680    | 520      | 958      | 18013    | 23851    | 30194    |

Concerning the developing countries, the trade of seafood is also increasing. But in those countries imports are superior to exports and rexports increase too because, thanks to a cheaper labor cost, they treat the marine products and sell them abroad. So the fisheries sector not only covers their consumption needs, but also balances their commercial deficits.

<u>Table 5 : TRADE Quantity (metric tonnes) and Value (thousands of dollar)</u>
Other developing countries or areas

|                     | 1985     | 1990     | 1995     | 2000     | 2005     | 2006     | 2007     |
|---------------------|----------|----------|----------|----------|----------|----------|----------|
| Export              | 5094878  | 6906306  | 10575840 | 12723185 | 15204209 | 15779508 | 15786119 |
| Quantity            |          |          |          |          |          |          |          |
| <b>Export Value</b> | 6911830  | 14737838 | 25133990 | 26922745 | 36105641 | 40585324 | 42947764 |
| Import              | 2676249  | 4421798  | 6530883  | 8624661  | 11781126 | 11880065 | 12369289 |
| Quantity            |          |          |          |          |          |          |          |
| Import Value        | 3008725  | 5034469  | 8716390  | 10279232 | 16237950 | 17960678 | 20309119 |
|                     |          |          |          |          |          |          |          |
| Production          | 10109625 | 13739063 | 19021157 | 20645268 | 25685423 | 26224363 | 27170201 |
| Quantity            |          |          |          |          |          |          |          |
| Reexport            | 54501    | 53160    | 145748   | 167537   | 168145   | 166422   | 203232   |
| Quantity            |          |          |          |          |          |          |          |
| Reexport            | 228043   | 46674    | 487590   | 673778   | 468951   | 439950   | 543661   |
| Value               |          |          |          |          |          |          |          |

For the least developed countries, the global trend shows an increase of the seafood trade, but the figures are very weak compared to international data.

<u>Table 6 : TRADE Quantity (metric tonnes) and Value (thousands of dollar)</u>
<u>Least developed countries or areas</u>

|                        | 1985   | 1990   | 1995    | 2000    | 2005    | 2006    | 2007    |
|------------------------|--------|--------|---------|---------|---------|---------|---------|
| <b>Export Quantity</b> | 252502 | 326299 | 534199  | 629652  | 1030256 | 998709  | 1062422 |
|                        |        |        |         |         |         |         |         |
| Export Value           | 473227 | 796505 | 1330163 | 1365563 | 2415603 | 2173245 | 2496543 |
| Import Quantity        | 368219 | 284175 | 237663  | 336070  | 531197  | 561414  | 674432  |
| Import Value           | 204563 | 220581 | 173084  | 322662  | 455657  | 614506  | 868824  |
| Production<br>Quantity | 578525 | 671699 | 770103  | 975605  | 1316666 | 1307585 | 1511049 |
| Reexport<br>Quantity   | 4091   | 1      | 36      | 20      | 832     | 49736   | 884     |
| Reexport Value         | 7418   | 5      | 12      | 87      | 6052    | 84275   | 2652    |

The graphs below confirm that exports are mainly realized by developing countries and that most of imports are realized by developed countries. So, advanced economies consume more seafood products than they produce. That is why they import them. The developing

countries are very dependant from their fisheries, for their consumption, but also for their trade.

Fig. 1: Fisheries exports quantities in 2007

### **Export Quantity 2007**

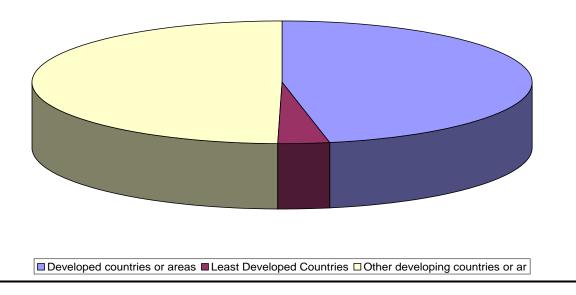
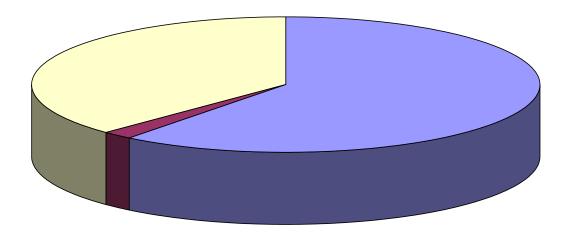
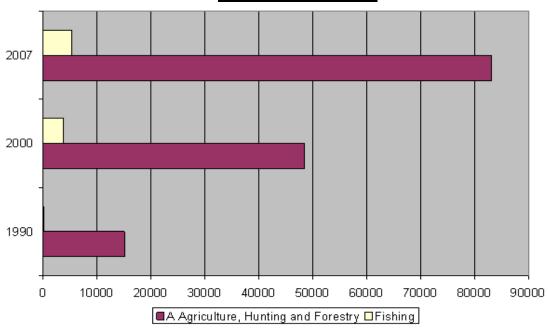
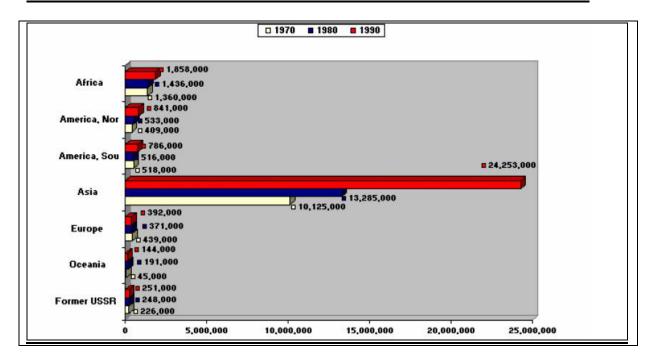




Fig. 2 : Fisheries imports and imports quantities in 2007


Import Quantity 2007




□ Developed countries or areas ■ Least Developed Countries □ Other developing countries or ar

This vulnerability of developing countries is confirmed when we consider their active population working in the fishery sector. The graph below compares the population working in the fisheries and the population working in the primary sector. Even if the part of population working for fisheries seems small, it is very important in the regions as Asia and Africa, which are very dependant on the fisheries activities.

Fig. 3: Evolution of the active population of fishermen at global and continental (Thousands of persons)





About the risks of ocean acidification in the different areas of the world, we can conclude that:

- The developing countries have an important place in the world activities of fisheries, capture and aquaculture.
- Aquaculture is developing and the number of cultivated species is increasing.
- The trade of seafood is growing too, especially in developing countries.
- The population working for the fishery sector is increasing and the developing countries are dependant from fisheries for their subsistance and for their trade.

Finally, the developing might be highly impacted by ocean acidification, particularly in Asia and Africa.

## Economic importance of fisheries for the Mediterranean countries

Although the economic importance of commercial fisheries is generally low for most Mediterranean countries relative to their Gross National Products, coastal activities can be quite large in some countries. A fishery can be a recreative value, and thus linked to tourism which can be an important economic sector in some countries such as Egypt and Croatia. Moreover, seafoods are essential to subsistence of the coastal population particularly in the less developed countries and also marine-related industries create jobs and distribute revenues. Fig. 2 gives an overview of the importance of fishery production for each of the 22 countries having a coastline on the Mediterranean Sea.

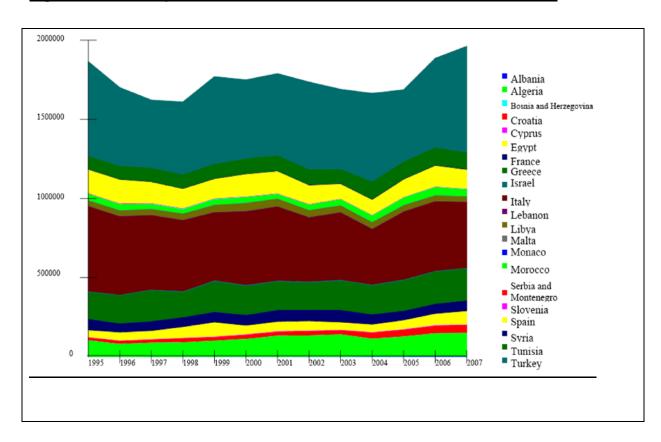
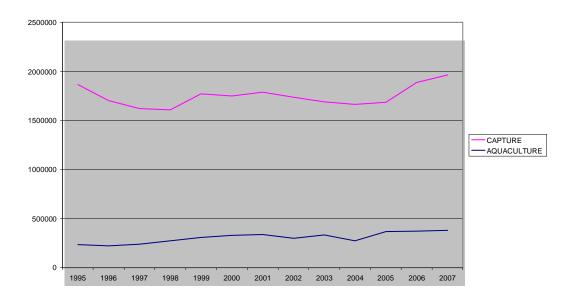



Fig. 4: Total Fishery Production in Mediterranean Countries (metric tonnes)

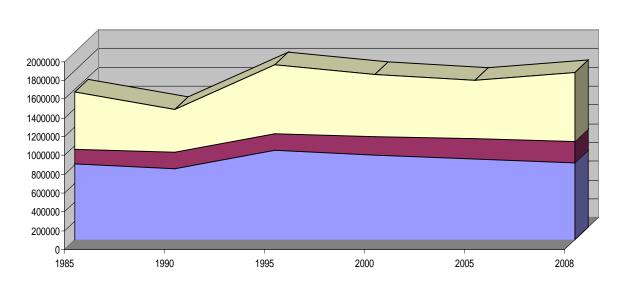

The evolution of the total fishery production in the different Mediterranean countries indicates that curves generally follow a country's major economical and political events, that

countries typically exploit one or two main species, and that the contribution of each species relative the total production is quite stable over time. However, there are wide differences between countries in terms of the species farmed and the trends in production. This monoculture or restricted number of fished species in each country is important if we want to put in evidence the impact of ocean acidification on the different species because some countries may be economically affected more quickly and deeper than other ones. This total fishery production can be split into capture and aquaculture (Fig. 3).

Capture is more important than aquaculture (in metric tonnes) and there has been a modest substantial increase in aquaculture over the 12-year record. If we break down these total fisheries data by species, separating capture and aquaculture, we can measure the values of the ocean acidification's possible economic impact.

We can see on the Table 1 that in most European countries, aquaculture represents important values. This is certainly due to European Union's incentives to develop this activity. The Mediterranean aquaculture industry uses some species that were directly used for human consumption (e.g. Sardines and anchovies) to feed animals. The socioeconomic impact is important because large amounts of fishes that were suitable for human consumption are turned into animal feed for fishes eaten by wealthy people (Naylor *et al.*, 2000).

Fig. 5 : Aquaculture and capture fishery production in Mediterranean area (metric tonnes)




<u>Table 7: Evolution of aquaculture in the Mediterranean countries in terms of monetary</u> value (thousands of US dollar)

|                 | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   |
|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Albania         | 152    | 204    | 156    | 469    | 721    | 1531   | 2102   | 1862   | 2481   | 3556   |
| Algeria         | 135    | 121    | 175    | 242    | 243    | 69     | 36     | 36     | 32     | 93     |
| Bosnia<br>&Her. |        |        |        |        | 1238   | 1323   | 614    | 1706   | 1816   | 1771   |
| Croatia         | 15021  | 15519  | 19250  | 22963  | 24958  | 22060  | 27740  | 27076  | 32152  | 35012  |
| Cyprus          | 8282   | 9106   | 9814   | 8985   | 10052  | 11047  | 14273  | 17931  | 17973  | 20203  |
| France          | 72500  | 67926  | 49444  | 59612  | 61623  | 76028  | 94335  | 99965  | 109105 | 109134 |
| Greece          | 262064 | 316513 | 281542 | 292822 | 233244 | 336310 | 356166 | 414056 | 448160 | 514094 |
| Israel          | 21693  | 28049  | 21619  | 20277  | 16461  | 16318  | 18353  | 17828  | 24680  | 24887  |
| Italy           | 289526 | 252740 | 332406 | 279844 | 255380 | 365849 | 266362 | 487398 | 486802 | 615157 |
| Libya           | -      | -      | -      | -      | -      | -      | 1376   | 1976   | 1978   | 1090   |
| Malta           | 10560  | 8509   | 5011   | 3080   | 3747   | 4541   | 6328   | 5366   | 7935   | 23980  |
| Morocco         | 4996   | 4856   | 3750   | 2271   | 3082   | 3895   | 3703   | 5597   | 248    | 528    |
| Serbia & Mont.  | 34     | 77     | 55     | 72     | 42     | 50     | 74     | 74     | -      | -      |
| Slovenia        | 967    | 549    | 565    | 581    | 298    | 602    | 1153   | 403    | 522    | 422    |
| Spain           | 3406   | 6938   | 8692   | 11852  | 12841  | 10955  | 17306  | 13620  | 13442  | 8384   |
| Tunisia         | 7374   | 2654   | 5311   | 7351   | 7228   | 8170   | 10053  | 11188  | 12128  | 16382  |
| Turkey          | 172218 | 176733 | 135565 | 87193  | 79331  | 180501 | 249960 | 352214 | 355588 | 400744 |

The fisheries production in the Med Sea represents about 1% of the world total fisheries, while the Med Sea corresponds to only 0,8% of the seas and oceans surface. The part of the developing countries' production is large compared to the advanced economies'.

Fig. 6: Total fisheries production in Mediterranean area (metric tonnes)



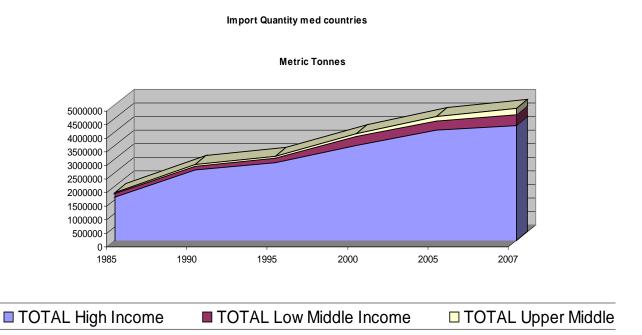
Total Fisheries Production Med Countries

■ TOTAL High Income ■ TOTAL Low middle income ■ TOTAL Upper middle income

About commercial aspects, the international trade has increased in the Mediterranean countries.

<u>Table 8 : Trade of fisheries commodities in the Med countries</u> <u>Quantity (metric tonnes) and values (thousands of dollars)</u>

| Med countries     | 1985      | 1990      | 1995      | 2000      | 2005       | 2007       |
|-------------------|-----------|-----------|-----------|-----------|------------|------------|
| Export Quantity   | 792 652   | 1 038 765 | 1 320 443 | 1 923 565 | 2 064 428  | 2 214 436  |
| Export Value      | 1 208 489 | 2 757 364 | 3 782 347 | 4 590 985 | 6 983 438  | 8 768 558  |
| Import Quantity   | 1 782 014 | 2 803 713 | 3 144 818 | 3 975 291 | 4 613 566  | 4 826 205  |
| Import Value      | 2 710 326 | 8 089 477 | 9 396 003 | 9 879 340 | 16 025 700 | 19 625 760 |
| Reexport Quantity | -         | 763       | -         | 93        | 2 338      | 2 759      |
| Reexport Value    | 4         | 2 427     | -         | 254       | 16 516     | 23 206     |


If we compare the seafood figures in Med countries to the ones in the world, we notice that imports are more important than exports.

<u>Table 9: Ratios Mediterranean countries / world</u> <u>Quantity (metric tonnes) and values (thousands of dollars)</u>

| Med/world           | 1985          | <u>1990</u>   | <u>1995</u>   | 2000          | 2005          | 2007          |
|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Export Quantity     | <u>5,71%</u>  | 6,08%         | <u>5,84%</u>  | 7,26%         | 6,63%         | <u>6,98%</u>  |
| Export Value        | <u>7,05%</u>  | <u>7,69%</u>  | <u>7,24%</u>  | 8,23%         | <u>8,83%</u>  | 9,32%         |
| Import Quantity     | 13,45%        | <u>16,11%</u> | <u>14,09%</u> | 14,93%        | <u>14,47%</u> | 14,62%        |
| <u>Import Value</u> | <u>13,91%</u> | <u>20,26%</u> | <u>16,46%</u> | <u>16,14%</u> | <u>19,34%</u> | <u>19,74%</u> |
| Reexport Quantity   |               | 1,28%         |               | 0,06%         | <u>1,36%</u>  | 1,33%         |
| Reexport Value      | 0,00%         | <u>3,18%</u>  |               | 0,04%         | 3,35%         | <u>4,03%</u>  |

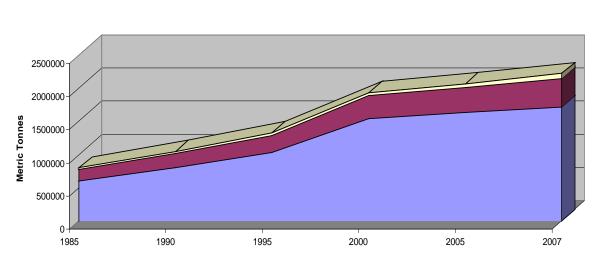
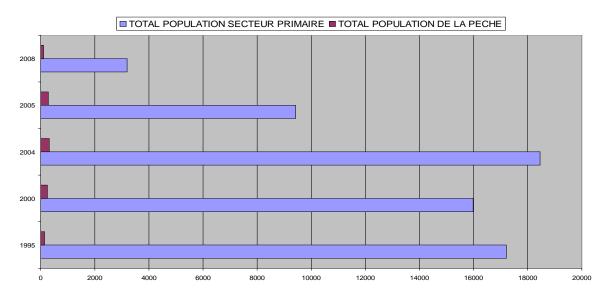

When we separate the Mediterranean imports according to their development levels, we notice that high income countries (France, Italy, Spain, Greece) import more than lower income countries.

Fig. 7 : Change in imports of fishery (metric tons) in the Mediterranean countries based on their level of income



Exports are realized by those high income countries too. So we can conclude that Med developing countries tend to consume their own fishes. Their subsistence is more dependant from seafood.

Fig. 8 : Change in exports of fishery (metric tons) in the Mediterranean countries based on their level of income




□ TOTAL High Income ■ TOTAL Low middle income □ TOTAL Middle Income

**Export Quantity med countries** 

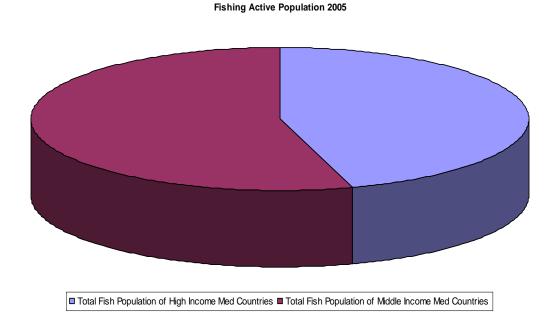

The part of the population living on fisheries activities is weak if compared to the primary sector.

Fig. 9: Evolution of the active population in the primary sector and the fishery sector in the Mediterranean countries.



In the Mediterranean developing countries, the population living on fisheries is more numerous than in high income Med countries. So, those countries are supposed to be more vulnerable in case of ocean acidification.

Fig. 10: Fishing active population in the Mediterranean countries based on their level of income in 2005.



In conclusion, while separating the Med countries according to their development level, this analysis put in evidence that lower income countries are more sensible to the risks of ocean acidification.

The Med Sea is an interesting field of study because several levels of development are represented.

Conclusion: Assessment of the potential scale of socio-economic impacts of OA and the equity of their distributions among the Mediterranean countries, that represent a very broad range in their states of economic development.

The Mediterranean Sea may be highly impacted by ocean acidification because its large number of calcifying organisms already suffers from synergistic impacts of other anthropogenic pressures along its heavily populated coastlines. To limit risks, both regional and global efforts are needed. Associated research must be interdisciplinary to propose solutions that will mitigate risks and to develop adaptation strategies. The marine resources will be certainly impacted.

Marine scientists and fisheries economists must try to determine the levels of the implication and forecast environmental and economic consequences. The problem is that, for the moment, scientists can not give conclusive predictions about the effects of ocean acidification, neither on species, nor in term of pH. Because of those uncertainties, economists can not evaluate properly the losses generated by ocean acidification. Working on different scenarios would be one possibility for the next steps of our research.

Even if the modification of the pH level is the same for the Mediterranean coasts, the socio-economic impact will be different in developed and developing countries because of, on one hand, the different weight of fisheries activities in the national GDPs and on the other hand, the equity of distribution of benefits /losses due to the fisheries activities. This approach could be interesting to develop in a further research.

### **References:**

- Charles, A. (2007), "The human dimension of fisheries adjustment: key issues and policy challenges", *Structural Change in Fisheries: Dealing with the Human Dimension* (Paris: Organisation for Economic Co-operation and Development), pp 15–44.
- Cooley, S. R. and Doney, S. C. (2009), "Anticipating ocean acidification's economic consequences for commercial fisheries", *Environ. Res. Lett.* 4, doi:10.1088/1748-9326/4/2/024007.
- Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J. *et al.* (1997), "The value of the world's ecosystem services and natural capital", *Nature* 387, 253-260.
- HILMI Nathalie, Denis ALLEMAND, Ross A. JEFFREE and James C. ORR (2009): "Future Economic Impacts of Ocean Acidification on Med Seafoods: First Assessment Summary" Proceedings of the Ninth International Conference on the Mediterranean Coastal Environment. MEDCOAST09, E. Özhan (Editor), 13-17 November 2009, Sochi, Russia
- Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S. and Schellnhuber, H. J. (2008), "Tipping elements in the earth's climate system", *Proc. Natl Acad. Sci.* (USA) 105, 1786–1793
- Sachs J. D. (2007), "The promise of the blue revolution", Scientific American, June 17.
- Stern, N. (2006), "The Economics of Climate: the Stern Review", Cambridge University Press.